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a b s t r a c t

The resonance frequency spectrum is first derived for anm-layered Goupillaud-type elastic
medium that is subjected to a discrete sinusoidal forcing function that varies harmonically
with time at one end andheld fixed at the other end. Analytical stress solutions are obtained
from a coupled first-order system of difference equations using z-transform methods,
where the determinant of the resulting global system matrix in the z-space |Am| is a
palindromic polynomial with real coefficients. The zeros of the palindromic polynomial
are distinct and are proven to lie on the unit circle for 1 ≤ m ≤ 5 and for certain
classes of multilayered designs identified by tridiagonal Toeplitz matrices. An important
result is the physical interpretation that all the positive angles, coterminal with the angles
corresponding to the zeros of |Am| on the unit circle, represent the resonance frequency
spectrum for the discrete model. A sequence of resonance frequencies for the discrete
model appears to be universal for all multilayered designs with an odd number of layers,
as it is independent of any design parameters.

The resonance frequency results for the discrete model are then extended to describe
the resonance frequency spectrum for the continuous model, where the forcing function
applied at one end of the strip is continuous and varies harmonically with time while
the other end is held fixed. The proposed natural frequency spectrum for a free-fixed m-
layered Goupillaud-type strip is confirmed by independently solving a simplified form of
the frequency equation, obtained after applying a transformation of the spatial variable.
Our results suggest that the natural frequency spectrum depends on the layer impedance
ratios and it is inversely proportional to the equal wave travel time for each layer.

The results are used to identify layered designswith a common frequency spectrumand
modify an existing design to obtain a desired frequency spectrum. Other connections are
madewith previous stress optimization results, the Chebyshev polynomials of the first and
second kind, as well as the natural frequencies of a free-fixed non-Goupillaud-type layered
strip.

Published by Elsevier B.V.

1. Introduction

The study of natural vibrations in elasticmedia include the study of resonance, as resonance can enhance the performance
of many sensors and devices, yet can devastate structures subjected to sustained temporally-periodic loading. Despite the
long history of developments in the field, exact solutions for the resonance response ofmultilayered elasticmedia have been
primarily limited to analyses involving only a few layers.

∗ Corresponding author. Tel.: +1 410 306 0863; fax: +1 410 306 0676.
E-mail address: george.a.gazonas.civ@mail.mil (G.A. Gazonas).

0165-2125/$ – see front matter. Published by Elsevier B.V.
doi:10.1016/j.wavemoti.2011.08.002
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A number of works establish the natural modes of vibration in multilayered media [1,2], and analogous problems for
n-segmented strings [3] and n-strings [4]. Churchill [5] uses Laplace transform methods to derive the transient resonance
response of a free-fixed elastic bar, and notes the presence of the product of a temporal term and time-harmonic function in
the solution that becomes unbounded at large times. Caviglia and Morro provide closed-form, time-domain expressions for
transient waves in a multilayered elastic (possibly anisotropic) medium [6]. They derive the transient resonance response
of a single isotropic elastic layer sandwiched between two halfspaces that is subjected to a temporally periodic sawtooth
function, and observe that resonancemakes the elastic layer acoustically transparent. A similar two-dimensional problem is
studied by Kaplunov and Krynkin [7] who examine the influence of layer stiffness and thickness on the resonance vibrations
in a symmetrically point-loaded single layer of elastic material enclosed between two half-spaces. Qiang et al. [8] study
the natural frequencies of anisotropic multilayers, and illustrate beat phenomena in two and three layer systems using
an efficient numerical eigensolution scheme that is based on semi-analytical methods. Exact expressions for the reflection
coefficients for a two-dimensional elastic layer overlying an elastic halfspace are obtained by Fokina and Fokin [9], but the
transient response of the system at resonance is not analyzed. Graff presents a general method [10] to determine the natural
frequencies of composite rods for power ultrasonic applications with a specific solution for a two-rod system. The method
can be extended to multilayered systems but the general problem of determining the natural frequencies with specific
geometry and material properties can only be solved using numerical methods.

Exact analytical expressions for the transient resonance response of a multilayered elastic medium are derivable,
however, if we specialize the medium to be of Goupillaud-type [11,12]. The Goupillaud specialization is often used in
geophysical applications to model wave propagation in inhomogeneous media [13]. Additional simplifications due to
transformation of the spatial variable to the travel-time variable have been particularly useful in this work [14,15]. The
transformation has simplified the initial-boundary value problem as well as the frequency equation, allowing us to derive
analytical expressions for the natural frequency spectrum in free-fixed Goupillaud-type multilayered media. In addition,
the present treatment uses a global matrix method that is attributed to Knopoff [16], rather than the Thomson–Haskell
transfer matrix formalism [17,18]. Since the recursion relations for the multilayered medium are written only in terms of
the stresses, only half the number of equations are required relative to those in classical global matrix methods [16].

Finally, Bube and Burridge [19] treat the inverse problem of finding the coefficients of a first order 2 × 2 hyperbolic
system related to reflection seismology. In order to numerically solve the continuous initial-boundary-value problem,
several difference schemes are applied, as discretizations to the corresponding differential equations. The difference scheme
IVp, given in equation (3.1.11) pg. 517 of [19], appears tomatch the recursive relations for the stress values given in Section 2.
The recursion relations and trigonometric stress solutions are shown to be exact, for discretely layeredmedia of Goupillaud-
type. The stress solutions that are derived herein using z-transformmethods, are used to determine the resonance response
for the discrete model, and subsequently extended to the continuous model.

The remainder of the paper is organized as follows. In Section 2, we derive stress solutions at resonance and
non-resonance frequencies for a Goupillaud-type elastic medium subjected to the given boundary conditions. This is
accomplished by generalizing the global system of recursion relations previously derived in [20] and using z-transform
methods. The determinant of the global system matrix |Am| is a palindromic polynomial with real coefficients. We prove
that the zeros of |Am| are distinct, complex conjugate, and lie on the unit circle for 1 ≤ m ≤ 5 and for certain classes
of multilayered designs identified by tridiagonal Toeplitz matrices. The zeros of the determinant allow us to identify the
resonance frequency spectrum for the discrete model. The resonance results derived for the discrete model in Section 2
are extended to the continuous model in Section 3, using a linear transformation between the frequencies of the discrete
and continuous forcing function. As a result, we are able to analytically describe the natural frequency spectrum of a free-
fixed Goupillaud-type strip. An alternative derivation for the natural frequency spectrum is also provided in Section 3
through a generalization of Graff’s method [10]. Common to the analysis in Sections 2 and 3 is the transformation and
simplification of the initial boundary value problem which replaces the spatial variable x with the travel-time variable ξ .
Various applications and interpretations are discussed in Section 4. Section 5 summarizes the results, while miscellaneous
references and derivations are included in the Appendices.

2. Discrete forcing function and resonance frequencies

2.1. Description of the discrete model

A finite strip made ofm-layers of homogeneous elastic materials is considered, where the density and elastic modulus of
thematerial occupying the ith layer are represented by ρi and Ei respectively, for i = 1, . . . ,m. We relate to the ith layer, the
wave speed ci = (Ei/ρi)1/2 and the characteristic impedance ρi · ci, for i = 1, . . . ,m. The material properties and the wave
speed are piecewise constant functions, taking constant values in each layer. The impedance ratio between layers i and i+1
is represented by αi =

ciρi
ci+1ρi+1

=

√
Eiρi√

Ei+1ρi+1
, for i = 1, . . . ,m − 1, while the transit time through the strip is denoted by τ .

Them-layered strip is of Goupillaud-type, which means equal wave travel time of τm for each layer. The strip is subjected to
zero initial conditions, a discrete loading function f (n), at one end, with n ≥ 0 and step 2τ

m , and held fixed at the other end,
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Fig. 1. Lagrangian diagram for an elastic strip made ofm-layers of equal wave travel time.

see Fig. 1. As a result, our initial-boundary value problem is

∂2u(x, t)
∂t2

= c2i
∂2u(x, t)
∂x2

, for xi−1 < x < xi i = 1, . . . ,m, and t > 0,

σ (0, t) = E1
∂u
∂x
(0, t) = f (n), for (n − 1)

2τ
m
< t < n

2τ
m
, n ≥ 1, and t > 0,

u(L, t) = 0,

u(x, 0) =
∂u
∂x
(x, 0) = 0.

(1)

The functions u(x, t) and σ(x, t) represent the displacement and stress respectively. The layer interface between the ith and
the (i + 1)th layer is located at xi for i = 1, . . . ,m − 1; x0 = 0 and xm = L, where L represents the length of the strip. By
replacing the spatial variable xwith the travel-time variable ξ , defined in [14,15] and below,1

ξ = ξ(x) =

 x

0

ds
c(s)

, (2)

it follows that dξ
dx = c(x) and our initial-boundary value problem (1) becomes

∂2u(ξ , t)
∂t2

=
∂2u(ξ , t)
∂ξ 2

, for
(i − 1)τ

m
< ξ <

iτ
m
, i = 1, . . . ,m, and t > 0,

σ (0, t) =
E1
c1

∂u
∂ξ
(0, t) = Ẽ1

∂u
∂ξ
(0, t) = f (n), for (n − 1)

2τ
m
< t < n

2τ
m
, n ≥ 1, and t > 0,

u(τ , t) = 0,

u(ξ , 0) =
∂u
∂ξ
(ξ, 0) = 0.

(3)

Due to the transformation of variables (2), problem (1) is simplified to a Goupillaud-type strip with length equal to the
transit time τ through the strip, layer lengths equal to τ

m , wave travel time equal to τ
m for each layer in either direction,

and wave speed of unity in each layer, as seen from the first equation in (3). The material properties of the ith layer are
represented by Ei and ρi for the physical case (1) and ρ̃i and Ẽi for the simplified case (3). Having ρ̃i = Ẽi =

Ei
ci

=
√
Eiρi,

it follows that the impedance ratios αi =

√
Eiρi√

Ei+1ρi+1
=

√
Ẽiρ̃i√

Ẽi+1ρ̃i+1
=

Ẽi
Ẽi+1

and the stress values E1 ∂u∂x =
E1
c1
∂u
∂ξ

= Ẽ1 ∂u∂ξ ,

i = 1, 2, . . . ,m − 1, remain unchanged as a result of the transformation of variables (2). Therefore, in all our derivations

1 Here, c ≡ c(s) is the piecewise constant wave speed function taking a constant value in each layer.
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of the stress solutions, we focus on the simplified case (3). As shown in Fig. 1, the original coordinates of the boundary and
layer interfaces x0 = 0 < x1 < x2 · · · < xi < · · · < xm = L are replaced by the new coordinates ξ0 = 0 < ξ1 =

τ
m <

ξ2 =
2τ
m < · · · < ξi =

iτ
m < · · · ξm = τ for i = 1, 2, . . . ,m. The time variable t is represented on the vertical axis and τ

m
represents the (equal) wave travel time for each layer of them-layered strip in either direction. The inner vertical solid lines
represent the layer interfaces.

Due to the continuity of stress and displacement at each layer interface, the stress values are constant in each square
and half-diamond subregion. The unknown stress values are represented by si(n) for i = 1, 2, . . . ,m and n ≥ 1. In a given
layer i, the stress values alternate (interlace) between si−1(n) and si(n) for i = 1, 2, . . . ,m, s0(n) = f (n), and n = 1, 2, . . ..
From the superposition of the transmitted and reflected waves at the layer interfaces and boundary, a system of coupled
first order difference equations for the stress terms was developed in [20] for the special case of a Heaviside step in stress
loading f (n) = p = constant and n ≥ 0. The present work generalizes this system by replacing the Heaviside step in stress
loading with an arbitrary discrete loading function f (n), n ≥ 0, as shown below

s1(n + 1) = −s1(n)+
2α1

1 + α1
s2(n)+

2
1 + α1

f (n + 1),

si(n + 1) = −si(n)+
2αi

1 + αi
si+1(n)+

2
1 + αi

si−1(n + 1), for i = 2, . . . ,m − 1,

sm(n + 1) = −sm(n)+ 2sm−1(n + 1),

(4)

subject to the zero-stress initial conditions si(0) = 0 for 1 ≤ i ≤ m. Here n ≥ 0 is a suitable time index and
si(n) represent the stress terms for 1 ≤ i ≤ m (see Fig. 1). The discrete function f (n), n ≥ 0, represents the stress
loading applied at ξ = 0. Notice that by applying the limiting condition αi → 0 to the recursive relation si(n + 1) =

−si(n) +
2αi
1+αi

si+1(n) +
2

1+αi
si−1(n + 1) for i = m, we recover the last equation in (4), corresponding to the fixed end. A

similar system of difference equations may be obtained for other initial and boundary conditions.
System (4) can then be solved using z-transform methods.2 As a result, the z-transform of (4) is expressed as

zS1(z) = −S1(z)+
2α1

1 + α1
S2(z)+

2
1 + α1

z(F(z)− f (0)),

zSi(z) = −Si(z)+
2αi

1 + αi
Si+1(z)+

2
1 + αi

zSi−1(z), for i = 2, . . . ,m − 1,

zSm(z) = −Sm(z)+ 2zSm−1(z).

(5)

After reorganizing the terms in (5), the linear system is written in matrix-vector form as

Amx⃗m = b⃗m, (6)

where Am is a tridiagonal matrix given as

Am =



z + 1 −η1α1 0 · · · 0 0 0 0
−η2z z + 1 −η2α2 0 · · · 0 0 0
0 −η3z z + 1 −η3α3 0 · · · 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 · · · 0 −ηm−1z z + 1 −ηm−1αm−1
0 0 0 · · · 0 0 −ηmz z + 1


m×m

, (7)

while

x⃗m =


S1(z)
S2(z)
...

Sm(z)


m×1

, b⃗m =


η1z(F(z)− f (0))

0
...
0


m×1

,

ηi =
2

1 + αi
for i = 1, . . . ,m − 1, ηm = 2.

Due to the sparseness of b⃗m, the solution of the linear system (6) is

x⃗m = A−1
m b⃗m =

η1z(F(z)− f (0))
|Am|


(−1)1+1

|A1,1|

(−1)1+2
|A1,2|

...

(−1)1+m
|A1,m|

 . (8)

2 The definition for the z-transform of g(n), n ≥ 0, is Z(g(n)) = G(z) =


∞

n=0 g(n)z
−n for |z| > R in the complex plane (see [21]).
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Here |Am| and |A1,i| are the determinants of Am and its minor A1,i, for i = 1, . . . ,m. The following recursive relation holds:

|Am| = (z + 1)|Am−1| − η1η2α1z|Am−2|, (9)

where Am corresponds to them-layered strip with impedance ratios α1, α2, . . . , αm−1; Am−1 corresponds to the remaining
(m − 1)-layered strip with impedance ratios α2, α3, . . . , αm−1, obtained after the removal of the first layer from the m-
layered strip; Am−2 corresponds to the remaining (m−2)-layered strip with impedance ratios α3, . . . , αm−1, obtained after
the removal of the first two layers from the m-layered strip. One can derive by induction that the determinant |Am| is a
palindromic polynomial with real coefficients; i.e. the coefficients in front of zm−j and z j are real and equal to each-other
for j = 0, . . . ,m and m ≥ 1. The complex roots of a polynomial with real coefficients occur in conjugate pairs, and since
the coefficients are palindromic, then the roots also occur in inverse pairs. Since the inverse pairing is not necessarily the
same as the conjugate pairing, if a root’s inverse is not its complex conjugate, then it must be one of a set of four related
roots that satisfy a palindromic quartic with real coefficients. As a result, each palindromic polynomial of even degree is
expected to factor into quadratic and quartic palindromes with real coefficients. In Section 2.2 below, the quadratic and
quartic factors of |Am| for 1 ≤ m ≤ 5, are shown to satisfy the necessary and sufficient conditions for all their roots to be
distinct (complex conjugate) on the unit circle. As a result, the determinant |Am| can be factored into quadratic palindromes
with real coefficients for 1 ≤ m ≤ 5, as presented later in (15).

2.2. On the zeros of the determinant |Am|

The expressions for the determinant |Am| using the recursive relation (9) for 1 ≤ m ≤ 5 are:

|A1| = z + 1, |A2| = (z + 1)2 − η2η1α1z = z2 −
2(χ1 − 2)

χ1
z + 1,

|A3| = (z + 1) ·


z2 −

2(χ2 − 2)
χ2

z + 1

, |A4| = z4 −

4Γ3

χ3
z3 +

2(4Γ3 − χ3 + 8)
χ3

z2 −
4Γ3

χ3
z + 1,

|A5| = (z + 1) ·


z4 −

4Γ4

χ4
z3 +

2(4Γ4 − χ4 + 8)
χ4

z2 −
4Γ4

χ4
z + 1


.

(10)

The design parameters involved are: χm−1 =
m−1

i=1 (1 + αi) for m ≥ 2, Γ3 = α1α3 − 1, and Γ4 = α1α3α4 + α1α2α4 +

α1α4 + α2α4 + α1α3 − 1. Next, the necessary and sufficient conditions (I) and (II) are applied to the quadratic and quartic
factors of |Am| respectively, to prove that all the zeros of |Am| in (10) are on the unit circle and distinct for 1 ≤ m ≤ 5. As
for the linear factor (z + 1)which appears form-odd, the zero z = −1 already is on the unit circle and distinct from all the
other zeros.

(I) The zeros of a quadratic factor with real coefficients of the form z2 + µz + 1 are distinct (complex conjugate) on the unit
circle iff µ2

− 4 < 0 or equivalently iff |µ| < 2.

For m = 2, 3, we have from (10) that µ = µm = −
2(χm−1−2)
χm−1

. Therefore the condition |µ| < 2 becomes equivalent to χm−1−2
χm−1

 < 1, which is true because χm−1 > 1.

(II) The zeros of a quartic factor with real coefficients of the form z4 + µz3 + νz2 + µz + 1 are distinct (complex conjugate)

on the unit circle3 iff [µ2
− 4ν + 8 > 0 and |

−µ±

√
µ2−4ν+8
2 | < 2].

Form = 4, 5, we have from (10) that µ = µm = −
4Γm−1
χm−1

and ν = νm =
2(4Γm−1−χm−1+8)

χm−1
.

- The requirementµ2
−4ν+8 > 0 becomes equivalent to [(χm−1−Γm−1)

2
−4χm−1] = [(Υm−1−2)2−4(1+Γm−1)] > 0,

where Υm−1 = χm−1 − Γm−1. The desired inequality follows from the following relations:
(Υ3 − 2)2 − 4(1 + Γ3) > (α1 + α3)

2
− 4α1α3 = (α1 − α3)

2
≥ 0 for m = 4, and (Υ4 − 2)2 − 4(1 + Γ4) >

(α1 + α2 + α1α2 + α3 + α4 + α3α4)
2
− 4(1 + Γ4) > (−α1 − α2 − α1α2 + α3 + α4 + α3α4)

2
≥ 0 form = 5.

- The requirement
−µ±

√
µ2−4ν+8
2

 < 2 is equivalent to
Γm−1±

√
(χm−1−Γm−1)2−4χm−1

χm−1

 < 1, which is true because

χm−1 > 1 > 0 and Γm−1 + 1 > 0 for m = 4, 5. As seen later in (A.5)–(A.7), the two requirements in (II) guarantee
real cosine values.

For the general m-layer case, our preliminary results with tridiagonal Toeplitz matrices, show that we can find designs
with any number of layers for which all the zeros of |Am| are distinct, have no multiples, and are on the unit circle. Indeed,

3 This criterion is derived after dividing the quartic polynomial by z2 and then applying the transformation y = z +
1
z .
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using standard techniques, the symmetric matrix Gm can be formed such that |Am| = |Gm|,

Gm =



z + 1

zζ1 0 · · · 0 0 0 0

zζ1 z + 1

zζ2 0 · · · 0 0 0

0

zζ2 z + 1


zζ3 0 · · · 0 0

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 · · · 0

zζm−2 z + 1


zζm−1

0 0 0 · · · 0 0

zζm−1 z + 1


m×m

(11)

with ζi = αiηiηi+1 for i = 1, 2, . . . ,m − 1. As before, ηi =
2

1+αi
for i = 1, . . . ,m − 1 and ηm = 2. If Gm has constant

off-diagonal terms, i.e.,
√
zζ1 =

√
zζ2 = · · ·

√
zζm−1 =

√
zζ or equivalently ζ = αiηiηi+1 for i = 1, 2, . . . ,m − 1. Then Gm

is a tridiagonal Toeplitz matrix with palindromic determinant |Gm| which can be written as [22],

|Gm| =

m
k=1


z + 1 − 2


zζg(k,m)


, (12)

or equivalently,

|Gm| =


⌊
m
2 ⌋

k=1


z2 + 2z


1 − 2ζg2(k,m)


+ 1


form even,

(z + 1)
⌊
m
2 ⌋

k=1


z2 + 2z


1 − 2ζg2(k,m)


+ 1


form odd,

(13)

where g(k,m) = cos
 kπ
m+1


. For 0 < ζ < 1, the zeros of the quadratic factors in (13),

zk = 2ζg2(k,m)− 1 ± 2i

ζg2(k,m)


1 − ζg2(k,m)


, (14)

are distinct, complex conjugate, and on the unit circle, with |zk|2 = zkz̄k = 1 and arg(zk) = θk, for all 1 ≤ k ≤ ⌊
m
2 ⌋. For

these ζ -values, the representation in (13) becomes consistent with (15). In our numerical experiments displayed later in
Fig. 5a, b, for a given value of ζ , 0 < ζ < 1, the impedance ratios are derived from the recursive relations: αm−1 =

ζ

4−ζ and
αi = −1 +

4
4−ζ−ζαi+1

for i = 1, . . . ,m − 2. Other tridiagonal [23,24] or k-Toeplitz [25,26] matrices, which have analytical
expressions for their determinants like that given by (12), may also be studied in an attempt to generalize the class of media
for which the roots of |Gm| = 0 are distinct and on the unit circle for arbitrarym.

In this paper, we only consider m-layered designs for which all the zeros of |Am| are distinct, have no multiples, and are
on the unit circle. Based on the results above, this class of designs is not empty. For zk = eIθk = cos θk + I sin θk, we have
that z−1

k = z̄k = eIθk = cos θk − I sin θk and (z − eIθk)(z − e−Iθk) = z2 − 2z cos θk + 1. As a result, a newly factored
representation of |Am| is obtained, with palindromic quadratics with real coefficients involving the cosines of the angles
θ1, θ2, . . . , θ⌊ m

2 ⌋ and linear factor (z + 1) form-odd,

|Am| =


⌊
m
2 ⌋

k=1

[z2 − 2z cos θk + 1] form even,

(z + 1)
⌊
m
2 ⌋

k=1

[z2 − 2z cos θk + 1] form odd.

(15)

2.3. General formulas for the stress and resonance frequencies

Based on the factorization of the determinant |Am| given in (15), for any m-layered design, if there are m distinct roots
on the unit circle, there arem distinct angles. The ⌊

m
2 ⌋ essential angles 0 < θk < π for k = 1, . . . , ⌊m

2 ⌋ were known in [20]

as the base angles. The equations for the angles θ0 = π and {θk}
⌊
m
2 ⌋

k=1 in terms of the design parameters (combinations of the
impedance ratios) for up to five layers are derived in [20]. Since the degree of |Am| is m and the degree of |A1,i| is m − 1,
for i = 1, 2, . . . ,m, the substitution of (15) into (8), results in the following expansion of the components x⃗m(i) of x⃗m into
partial fractions:
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x⃗m(i) = z(F(z)− f (0))

η1(−1)i|A1,i|

|Am|



= z(F(z)− f (0))

 bi,0
z + 1

+

⌊
m
2 ⌋

k=1

a∗

i,kz + b∗

i,k

z2 − 2z cos θk + 1

 = (F(z)− f (0))

 bi,0z
z + 1

+

⌊
m
2 ⌋

k=1

a∗

i,kz
2
+ b∗

i,kz

z2 − 2z cos θk + 1

 , (16)

where bi,0 = 0 for m even and i = 1, 2, . . . ,m. After applying the inverse z-transform to (16), a general representation for
the stress terms in (4) is obtained,

si(n) = Z−1(x⃗m(i)) = f (n) ∗

bi,0(−1)n +

⌊
m
2 ⌋

k=1

ai,k cos(nθk)+ bi,k sin(nθk)


− f (0) ·

bi,0(−1)n +

⌊
m
2 ⌋

k=1

ai,k cos(nθk)+ bi,k sin(nθk)

 , (17)

for the following choices of the coefficients,

ai,k = a∗

i,k, bi,k =
a∗

i,k cos θk + b∗

i,k

sin θk
for k = 1, . . . ,

m
2


,

for i = 1, 2, . . . ,m and n ≥ 0. The operation ∗ means convolution. The stress representation previously derived in [20]
can now be recovered for the special choice of loading f (n) = p for n ≥ 0. The stress representation in (17) involves sums
of sines and cosines of multiples of angles, which relate to the Chebyshev polynomials of the first and second kind. For the
choice of f (n) = sin(nω̃), n ≥ 0, after substituting f (0) = 0 and F(z) = Z(f (n)) = Z(sin(nω̃)) =

z sin(ω̃)
(z2−2z cos ω̃+1)

into (16),
and then applying the inverse z-transform we get

si(n) = bi,0Z−1


z2 sin(ω̃)
(z2 − 2z cos ω̃ + 1)(z + 1)


+

⌊m
2 ⌋

k=1

Z−1


z sin(ω̃) · (a∗

i,kz
2
+ b∗

i,kz)

(z2 − 2z cos θk + 1)(z2 − 2z cos ω̃ + 1)


. (18)

In the subsections that follow, the inverse z-transform is applied to the expressions in (18) to derive the stress formulas
at resonance and non-resonance frequencies; the results are verified with numerical experiments. Based on these results,
we prove that the resonance frequency spectrum for the discrete model consists of all the positive angles coterminal with

θ0 = π or {±θk}
⌊
m
2 ⌋

k=1 , as shown below
ω̃l0 = θ0 + 2l0π = (2l0 + 1)π (for m odd only),
ω̃l1,k = θk + 2l1π, l0, l1, l2 = 0, 1, 2, . . . ,

ω̃l2,k = −θk + 2(l2 + 1)π, k = 1, . . . ,
m
2

 (19)

or equivalently,
cos ω̃ = −1 (for m odd only),

cos ω̃ = cos θk for k = 1, . . . ,
m
2


.

(20)

The fact that the θ-angles depend only on (certain combinations of) the impedance ratios implies that the resonance
frequencies for the discrete model in (19) depend on the same combinations of the impedance ratios and no other
parameters.

2.4. Stress solutions at non-resonance frequencies

Herewe show that the values of the driving frequency ω̃ that satisfy cos ω̃ ≠ cos θ0 = −1 (form odd), and cos ω̃ ≠ cos θk
for all k = 1, . . . , ⌊m

2 ⌋, represent non-resonance frequency values. In the set of real numbers, this set of frequency values is
the complement of the set of values identified in (20). Indeed, applying the partial fraction expansion to (18), we derive the
following stress solutions,

si(n) = −
bi,0 sin ω̃

2(1 + cos ω̃)
(−1)n +

 bi,0 sin ω̃
2(1 + cos ω̃)

+

⌊m
2 ⌋

k=1

Ai,k

 cos(nω̃)

+

 bi,0
2

+

⌊m
2 ⌋

k=1

Bi,k

 sin(nω̃)+

⌊m
2 ⌋

k=1

Ci,k cos(nθk)+

⌊m
2 ⌋

k=1

Di,k sin(nθk), (21)
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a b

Fig. 2. Stress time history for a two-layered Goupillaud-type strip in the middle of the second layer located at ξ = 3/4. Impedance ratio α1 = 1/3, angle
θ1 = 2π/3, τ = 1, and loading f (n) = sin(nω̃) at ξ = 0. (a) ω̃ = π/4. (b) ω̃ = 0.9 · θ1 = 0.6π .

where

Ai,k = −Ci,k =
a∗

i,k sin ω̃

2(cos ω̃ − cos θk)
, Bi,k =

a∗

i,k cos ω̃ + b∗

i,k

2(cos ω̃ − cos θk)
, Di,k = −

(a∗

i,k cos θk + b∗

i,k) sin ω̃

2 sin θk(cos ω̃ − cos θk)
. (22)

As before, bi,0 = 0 when the number of layers m is even. For a given value of ω̃, the stress solutions in (21), including all
the coefficients and angles θk for k = 1, . . . ,

m
2


, can be also expressed in terms of the impedance ratios only (see (6)–(8)).

Illustrations of the bounded stress solutions at non-resonance frequencies appear in Fig. 2. As depicted in the plots in Fig. 2,
when positioned in the middle of the second layer, the time interval at which si(n) is reached is 4n+2i−3

4 < t < 4n+2i−1
4 for

n ≥ 1 and i = 1, 2 (see Fig. 1). Beat phenomena are clearly visible in 2b, as the driving frequency approaches a resonance
frequency.

2.5. Stress solutions at resonance frequencies

The stress solutions in (21) suggest that the driving frequencies ω̃ identified in (20) are resonance frequencies. Here we
confirm this by deriving the stress solutions at these expected resonance frequencies, demonstrating that such solutions
grow without bound over time while oscillating.

Case I. cos(ω̃) = −1 = cos θ0 (form odd only).

The fact that cos(ω̃) = −1 or equivalently that ω̃ takes values ω̃l0 = (2l0 + 1)π for l0 = 0, 1, 2, . . ., implies that
f (n) = sin(nω̃) = sin(nπ) = 0 for all n ≥ 0. As a result, due to the zero input in loading, we will not be able to detect
resonance, as concluded by (17). By choosing f (n) = cos(nω̃) = cos(nπ) we overcome this obstacle. Based on (16)–(17),
we expect any unbounded stress terms to come from

F(z) ·

 bi,0z
z + 1

+

⌊m
2 ⌋

k=1

a∗

i,kz
2
+ b∗

i,kz

z2 − 2z cos θk + 1

 =
z

z + 1
·

 bi,0z
z + 1

+

⌊m
2 ⌋

k=1

a∗

i,kz
2
+ b∗

i,kz

z2 − 2z cos θk + 1

 , (23)

after the inverse z-transform is applied. We conclude that the only term in (23) that generates unbounded stress values is
bi,0z2

(z+1)2
for bi,0 ≠ 0, due to the fact that

Z−1


bi,0z2

(z + 1)2


= bi,0 · Wn(−1) = bi,0(−1)n(n + 1). (24)

Here Wn(y) represents the Chebyshev polynomial of the second kind evaluated at y = −1. Notice that the resonance
frequency spectrum ω̃l0 = (2l0 + 1)π for l0 = 0, 1, 2, . . ., is universal for all the designs with an odd number of layers
and it is independent of any design parameters. This is illustrated in Fig. 3 for the seven- and eleven-layer case.

Case II.a. cos ω̃ = cos θk∗ and sin ω̃ = sin θk∗ .
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a b

Fig. 3. Stress time history for a multilayered strip with τ = 1 and impedance ratios α1 = 3, α2 = 2, α3 = 1.5, α4 = 2.2, α5 = 0.3, α6 = 1.7, α7 = 1.4,
α8 = 3.1, α9 = 0.8, α10 = 4 as applicable; loading f (n) = cos(nω̃) is applied at ξ = 0 for ω̃ = π . (a) The middle of the second layer of a seven-layered
strip located at ξ = 3/14. (b) The middle of the second layer of an eleven-layered strip located at ξ = 3/22.

Suitable partial fraction expansions of (18) give the following stress solutions for the frequency spectrum ω̃l1,k∗ = θk∗ +2l1π ,
l1 = 0, 1, 2, . . .,

si(n) = −
bi,0 sin θk∗

2(1 + cos θk∗)
(−1)n +

 bi,0 sin θk∗
2(1 + cos θk∗)

+ nÃi,k∗ +

⌊
m
2 ⌋

k=1,k≠k∗
Ai,k

 cos(nθk∗)

+

 bi,0
2

+ nB̃i,k∗ + C̃i,k∗ +

⌊
m
2 ⌋

k=1,k≠k∗
Bi,k

 sin(nθk∗)

+

⌊
m
2 ⌋

k=1,k≠k∗
Ci,k cos(nθk)+

⌊
m
2 ⌋

k=1,k≠k∗
Di,k sin(nθk). (25)

Here Ai,k, Bi,k, Ci,k, Di,k are given from (22) for ω̃ = θk∗ + 2l1π , l1 = 0, 1, 2, . . ., while

Ãi,k∗ = −
(a∗

i,k∗ cos θk∗ + b∗

i,k∗)

2 sin θk∗
, B̃i,k∗ =

a∗

i,k∗

2
, C̃i,k∗ =

a∗

i,k∗ + b∗

i,k∗ cos θk∗

2 sin2 θk∗
. (26)

As before, bi,0 = 0 for m even and sin θk ≠ 0 for all k = 1, . . . ,
m

2


. All the terms in the stress solution (25) are bounded,

except [Ãi,k∗ cos(nθk∗) + B̃i,k∗ sin(nθk∗)] · n, which are multiplied by the time-related linear factor n. This implies that the
stress amplitude is expected to grow without bound while oscillating over time, proving resonance.

Case II.b. cos ω̃ = cos θk∗ and sin ω̃ = − sin θk∗ = sin(−θk∗).
A similar stress representation to (25) can be obtained at the frequency values ω̃l2,k∗ = −θk∗ + 2(l2 + 1)π , l2 = 0, 1, 2, . . .,
after a sign adjustment for some of the coefficients.

The resonance response in a four- and five-layered elastic strip using the analytical results generated from (25) is
illustrated in Fig. 4. This is a demonstration and corroboration of formula (19) in predicting resonance. As illustrated in

Fig. 4 for the four-layer case, the base angle θ2 = cos−1

Γ3−

√
(χ3−Γ3)2−4χ3
χ3


represents a resonance frequency. The same

is true for the five-layer case and the base angle θ1 = cos−1

Γ4+

√
(χ4−Γ4)2−4χ4
χ4


. The relevant design parameters are given

by χm−1 =
m−1

i=1 (1 + αi) for m = 4, 5; Γ3 = α1α3 − 1, and Γ4 = α1α3α4 + α1α2α4 + α1α4 + α2α4 + α1α3 − 1 while the
impedance ratios are α1 = 0.6, α2 = 1.5, α3 = 2, and α4 = 1.2, as applicable.

The resonance response in a twenty two- and thirty nine-layered elastic strip generated from the recursive relations (4)
and (13)–(14) is illustrated in Fig. 5.

This is another demonstration and corroboration of formula (19) in predicting resonance. For the twenty two layer case,
the base angle corresponding to k = 11 and ζ = 7/9 represents a resonance frequency. Similarly for the thirty nine layer
case, the base angle obtained for k = 5 and ζ = 1/2 represents a resonance frequency. The impedance ratios in both cases
are derived from the recursive relations: αm−1 =

ζ

4−ζ and αi = −1 +
4

4−ζ−ζαi+1
for i = 1, . . . ,m − 2.
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a b

Fig. 4. Stress time history for a multilayered strip with τ = 1 and loading f (n) = cos(nω̃) applied at ξ = 0. (a) The middle of the second layer of a

four-layered strip located at ξ = 3/8, when the driving frequency is ω̃ = θ2 , θ2 = cos−1

Γ3−

√
(χ3−Γ3)2−4χ3
χ3


, χ3 = 12, Γ3 = 0.2. (b) The middle of the

second layer of a five-layered strip located at ξ = 3/10, when the driving frequency is ω̃ = θ1 , θ1 = cos−1

Γ4+

√
(χ4−Γ4)2−4χ4
χ4


, χ4 = 26.4, Γ4 = 5.24.

a b

Fig. 5. Stress time history for a multilayered strip with τ = 1 and loading f (n) = sin(nω̃) applied at ξ = 0. (a) The middle of the first layer of a twenty
two-layered strip when the driving frequency is ω̃ = θ11 , (b) the middle of the fifth layer of a thirty nine-layered strip when the driving frequency is
ω̃ = θ5 .

2.6. Accuracy and precision of the recursive and explicit solutions

Despite the fact that the recursive relations (4) and the explicit formulas (17) are exact, the stress solutions si(n), n ≥ 1,
i = 1, . . . ,m, calculated from these formulas, are not always exact. Here we show that for a Heaviside stress loading and
certain layer properties, the stress solutions represented by terminating decimals are exact, as they do not exhibit roundoff
error. In others cases, when the stress solutions are represented by non-terminating decimals, a precision loss is observed.
This discussion is particularly important for verification of numerical finite element solutions with ‘‘exact’’ solutions; one
should be aware of the loss in precision even in the ‘‘exact’’ solutions [27].

For a free-fixed two-layered strip subjected to a Heaviside loading with layer impedance ratio α = 3, the stress
in layer 2 is represented by a periodic sequence of 12 rational numbers that can be expressed as terminating decimals
{
1
2 , 1,

3
2 , 2, 2, 2,

3
2 , 1,

1
2 , 0, 0, 0, . . .} (see Fig. 7(b)). Both, the recursive relations (4) and the explicit trigonometric formulas

(17) predict this stress sequence exactly for all n ≥ 1.
Alternatively, for a free-fixed two-layered strip subjected to a Heaviside loading with layer impedance ratio α = 4, a loss

in precision is observed when a fixed number of significant digits is used in the numerical calculations. The loss of precision



G.A. Gazonas, A.P. Velo / Wave Motion 49 (2012) 135–151 145

n n

495

496

497

498

499

500

150

200

250

300

350

400

450

500
D

ig
its

 o
f P

re
ci

si
on

D
ig

its
 o

f P
re

ci
si

on

0 200 400 600 800 1000 20 50 100 200 500 1000

a b

Fig. 6. Precision loss in stress calculations for a two-layered Goupillaud-type strip with α = 4, subjected to a Heaviside loading f (n) = p. (a) Linear loss
in precision obtained from the recursive relations (4), and (b) log-linear loss in precision in the explicit formula (17).

with the recursive relations (4) is due to roundoff error, while the loss of precision with the trigonometric formulas (17) is
due to a loss of significant digits in the trigonometric evaluations that involve increasingly large arguments.

Using arbitrary precision arithmetic available in the commercial software package Mathematica 8, the loss of precision
in stress calculations is illustrated in Fig. 6. If the calculations begin with numerical precision of 500 decimal places, the
recursive relations exhibit a linear loss in precision with each recursive step, whereas the explicit analytical solutions
exhibit a log-linear loss of precision. Similar conclusions can be made for the recursive and analytical stress solutions at
the resonance and non-resonance frequency cases studied here.

3. Continuous forcing function and natural frequencies

In this section, we consider the initial-boundary value problem (3) for a stress loading of the form σ(0, t) = sin(ωt), for
t ≥ 0. Unlike the discrete model, the stress loading (forcing function) for the continuous model is continuous with time. In
addition, unlike the discrete model, the resonance frequency spectrum for the continuous model is not found by solving the
corresponding initial-boundary value problem. Instead, we use the linear transformation in frequency

ω̃ =
2τ
m
ω, (27)

between the frequency of a continuous forcing function ω and the frequency of the corresponding discrete forcing function
ω̃ and time step 2τ

m , to extend the resonance frequency results (19) to our continuous model:

ωl0 =
m
2τ

· [θ0 + 2l0π ] =
1

2

τ
m

 · (2l0 + 1)π, (form odd only),

ωl1,k =
m
2τ

· [θk + 2l1π ] =
1

2

τ
m

 · [θk + 2l1π ], l0, l1, l2 = 0, 1, 2, . . . ,

ωl2,k =
m
2τ

· [−θk + 2(l2 + 1)π ] =
1

2

τ
m

 · [−θk + 2(l2 + 1)π ], k = 1, . . . ,
m
2


.

(28)

The linear transformation in frequency (27) is discussed in [28], as the nature of time (continuous or discrete) is expected
to affect the nature of the frequency. The frequency for the analog (continuous) time signal is related to the frequency of
the digital (discrete) time signal through the linear transformation (27), involving the time step or the so-called sampling
interval. For our problem, one can derive relation (27) between the frequency ω of the continuous forcing function sin(ωt),
t ≥ 0, and the frequency ω̃ of the discrete forcing function sin(ω̃n), n ≥ 1, based on the following operations,

sin(tω) = sin


t
2τ
m

·
2τ
m
ω


→ sin

 
t
2τ
m


·
2τ
m
ω


= sin


n ·

2τ
m
ω


= sin(nω̃).

As seen in Fig. 1, t ≥ 0 represents the time variable, n = ⌈
t
2τ
m

⌉ = 0, 1, 2, . . ., represents a time-related index, and τ
m

represents the (equal) wave travel time for each layer.
The proposed resonance frequency spectrum in (28) also represents the natural frequencies of a free-fixed layered

strip. The proposed natural frequency formulas in (28) suggest that for a free-fixed m-layered Goupillaud-type strip, the
natural frequency spectrum depends on (certain combinations of) the impedance ratios α1, α2, . . . , αm−1 and it is inversely
proportional to the (equal) wave travel time τ

m for each layer.
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a b

Fig. 7. Stress time history for a two-layered Goupillaud-type strip with impedance ratio α1 = 3, θ1 =
π
3 , τ = 1, at the middle of the second layer located

at ξ = 3/4 subjected to loading (a) f (n) = sin(nω̃)with ω̃ = θ =
π
3 . (b) f (n) = 1 for n ≥ 0.

3.1. An alternative derivation of the natural frequency spectrum using the frequency equation

Here, we derive rigorously the natural frequency spectrum (28) for a free-fixed m-layered Goupillaud-type strip, by
generalizing the procedure described in [10] and solving the frequency equation for 1 ≤ m ≤ 5. Similar to Section 2, the
transformation of variables (2) is used to replace the spatial variable xwith the travel-time variable ξ for the boundary value
problem under consideration. The advantage of applying the transformation of variables (2) is that the frequency equation
obtained is a lot simpler to solve, allowing us to recognize patterns and develop formulas for the natural frequency spectrum.

Following the approach taken in Section 2, and applying the transformation of variables (2), the governing equations for
u(ξ , t) become:

∂2ui(ξ , t)
∂t2

=
∂2ui(ξ , t)
∂ξ 2

, for ξi−1 < ξ < ξi, i = 1, . . . ,m,

where ξ0 = 0 < ξ1 =
τ
m < ξ2 =

2τ
m < · · · < ξi =

iτ
m < · · · ξm = τ , for i = 1, 2, . . . ,m. Notice that the wave

speed has become unity for each layer, while the material properties become ρ̃i = Ẽi =
Ei
ci

=
√
Eiρi for i = 1, 2, . . . ,m,

as previously defined in Section 2. Seeking harmonic solutions, we may represent u(ξ , t) = U(ξ)ψ(t) and Ui(ξ) =

Ai sinωξ + Bi cosωξ, for ξi−1 < ξ < ξi and i = 1, . . . ,m, where ω is the frequency of the harmonic motion. Similarly,
ψ(t) can be represented in the form ψ(t) = A∗ sinωt + B∗ cosωt or in exponential form as ψ(t) = A∗∗eIωt

+ B∗∗e−Iωt ,
where I =

√
−1. The boundary conditions at ξ = 0 and ξ = τ imply that

dU1(0)
dξ

= Um(τ ) = 0,

which together with the continuity of stress and displacement conditions at each layer interface, lead to the following
homogeneous linear system of equations,


A1 = 0,
Ai sin (ωξi)+ Bi cos (ωξi) = Ai+1 sin (ωξi)+ Bi+1 cos (ωξi) for i = 1, . . . ,m − 1,
αi [Ai cos (ωξi)− Bi sin (ωξi)] = Ai+1 cos (ωξi)− Bi+1 sin (ωξi) for i = 1, . . . ,m − 1,
Am sin (ωξm)+ Bm cos (ωξm) = 0.

(29)

The relations Ẽi
Ẽi+1

=
Ei
ci

·
ci+1
Ei+1

=
ciρi

ci+1ρi+1
= αi, for i = 1, . . . ,m − 1, were applied to the system (29), using the fact that

c · ρ = E/c. The system (29) is written in matrix-vector form as

∆mv⃗ = 0⃗, (30)



G.A. Gazonas, A.P. Velo / Wave Motion 49 (2012) 135–151 147

where

∆m =



1 0 0 0 . . . 0
sin γ1
α1 cos γ1

0
0
0
... ∆̃m

0


2m×2m

, v⃗ =



A1
B1
...
Ai
Bi
...
Am
Bm


2m×1

, (31)

and

∆̃m =



cos γ1 − sin γ1 − cos γ1 0 0 0 0
−α1 sin γ1 − cos γ1 sin γ1 0

0 sin γ2 cos γ2 − sin γ2 − cos γ2
0 α2 cos γ2 −α2 sin γ2 − cos γ2 sin γ2

. . .
. . .

. . .
. . .

...
...

0 . . . 0 0
0 . . . 0 sin γm−1 cos γm−1 − sin γm−1 − cos γm−1
0 . . . 0 αm−1 cos γm−1 −αm−1 sin γm−1 − cos γm−1 sin γm−1
0 . . . 0 0 0 sin γm cos γm


, (32)

with γi = ξiω =
iτω
m for i = 1, . . . ,m. Seeking a nonzero solution for the homogeneous system (30), the determinant of the

system matrix ∆m must vanish

|∆m| = 0. (33)

Eq. (33) gives the frequency equation forω, which can be successfully solved using symbolic algebra software for a stripwith
up to five layers (see Appendix A). Solving the frequency equation (33) for the general m-layer case, poses a computational
challenge.

Comparing the formulas for the natural frequencies from Appendix A with the formulas for the θ-angles from [20], we
obtain the following relation,

cos
2τ
m
ω = cos θ,

which confirms the relationship in (27) between the frequencies ω̃ given in (19) and ω in (28).

4. Applications of the frequency results

The properties of thematerials used in this section are included in Appendix C. The characteristic impedance in each layer
is calculated in terms of the material properties

√
Eρ. Once the length of one layer is chosen, the length of each remaining

layer is determined according to the recursive relations: Li
ci

=
Li+1
ci+1

or Li+1 =


Ei+1
ρi+1

·
ρi
Ei

Li, to provide equal wave travel time.
Here Lj, cj, Ej and ρj, for j = i, i + 1, represent the length, wave speed, elastic modulus and material density for the ith and
(i + 1)th layer respectively, i = 1, . . . ,m − 1.

4.1. One dimensional layered media with a common frequency spectrum

According to (19), the resonance frequency spectrum for the discretemodel depends only on certain combinations of the
impedance ratios α1, α2, . . . , αm−1. Such combinations of impedance ratios when 2 ≤ m ≤ 5 are represented by the design
parameters χm−1 for m = 2, 3, and χm−1, Γm−1 for m = 4, 5, see (10). There are (theoretically) infinitely many m-layered
designs of a Goupillaud-type elastic strip that have the same values of the design parameters χm−1, Γm−1 for 2 ≤ m ≤ 5,
and hence the same resonance frequency spectrum for the discrete model.

As for the natural frequency spectrum of a free-fixed m-layered Goupillaud-type strip, based on (28), it depends not
only on combinations of the impedance ratios α1, α2, . . . , αm−1 but also on the (equal) wave travel time τ

m for each layer.
Therefore, to obtain designs with a common natural frequency spectrum, besides having the same values of the relevant
design parameters, the layer lengths have to be chosen so that they all have the same wave travel time.
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For instance, for the three-layer case with χ2 = (1 + α1)(1 + α2), the tungsten–lead–aluminum configuration with
α1 ≈ 5.828 andα2 ≈ 0.952 has the same value ofχ2 ≈ 13.33 as the lead–aluminum–copper configurationwithα1 ≈ 0.952
and α2 ≈ 5.828. Another material design with χ2 ≈ 13.33 is the aluminum–steel–brass configuration with α1 ≈ 0.331 and
α2 ≈ 9.016. In addition, in order for thesematerial designs to have a common natural frequency spectrum for the free-fixed
strip, only the length of one layer in one of the designs may be chosen at random. The lengths of the remaining layers in all
the three designs are then determined to provide equal wave travel time.

4.2. Design modification that gives a desired frequency spectrum within limitations

Adding a new layer in front of an existing two-layered Goupillaud-type strip with χ1 = (1 + α1) and θ1, allows us to
modify the resonance frequency spectrum for the discrete model in (19) and (20). The length of the new layer must be
chosen so that the strip remains of Goupillaud-type. The new three-layered strip is characterized by χ2 = (1+α∗

1)(1+α∗

2)
and base angle θ∗

1 , with α∗

1 to be determined and α∗

2 = α1. The unknown impedance ratio α∗

1 is derived from the following
formula

α∗

1 = −1 +
2

χ1(1 − V )
, where

χ1 − 2
χ1

= cos θ1 < V = cos θ∗

1 < 1,

for a desirable value of the cosine of θ∗

1 given by V = cos θ∗

1 =
χ2−2
χ2

. For instance, for a given θ1 =
π
6 and for the choice of

θ∗

1 =
π
9 we have that cos θ1 = cos


π
6


< V = cos θ∗

1 = cos

π
9


, and the impedance ratios of the three-layered strip are

α∗

1 = −1 +
2−

√
3

2(1−cos( π9 ))
and α∗

2 =
2+

√
3

2−
√
3
. The new natural frequency spectrum is obtained by substituting θ∗

1 =
π
9 into (19)

or (20).

4.3. Resonance frequencies and optimal designs

For them-layered strip subjected to aHeaviside loading [20], itwas shown thatwhen the optimal values of the base angles
θk,opt for k = 1, . . . ,

m
2


, given in Table B.1 of Appendix B, were substituted into the respective angle-design parameter

equations, optimal m-layered designs were generated for 2 ≤ m ≤ 5. These optimal designs were expected to provide the
smallest stress amplitude of double the loading in all layers, for all time.
However, when these optimal angle values are substituted into (19) and (28), they generate the resonance frequency
spectrum for the discrete and continuousmodel respectively. As a result, for these designs, depending on the type of loading
one can get either the best or the worst outcome when it comes to controlling the stress amplitude, see the illustration
in Fig. 7. As the stress amplitude in Fig. 7(a) grows without bound over time for a harmonic forcing condition, the stress
amplitude in Fig. 7(b) does not exceed double the loading for a Heaviside loading condition.

4.4. Natural frequencies of a free-fixed non-Goupillaud-type layered strip with integer layer length ratios

The natural frequency results for a free-fixed Goupillaud-type layered strip with equal layer lengths given in (A.1)–(A.7),
may be extended to a free-fixed non-Goupillaud-type layered strip with integer layer length ratios.

For instance, the frequency results for a free-fixed four-layered Goupillaud-type strip with equal layer lengths given in
(A.5), can be extended to a free-fixed three-layered non-Goupillaud-type stripwithwave travel time ratios 1:2:1 by choosing
α2 = 1. With these conditions, (A.5) becomes

(1 + α1)(1 + α3) cos2
τ

2
ω − Γ3 cos

τ

2
ω + (Γ3 − (1 + α1)(1 + α3)+ 2) = 0, (34)

where Γ3 = (α1α3 − 1) is chosen so that the (cosine) solutions vary in the interval [−1, 1]. This can be achieved when
Γ3 = 0, which implies that (1 + α1)(1 + α3) > 2. As a result, (34) reduces to:

0 < cos2
τ
2
ω


=
(1 + α1)(1 + α3)− 2
(1 + α1)(1 + α3)

< 1.

5. Conclusions

The resonance frequency spectrum was derived for anm-layered Goupillaud-type elastic medium that was subjected to
a discrete, time-harmonic sinusoidal forcing function at one end, and held fixed at the other end. Analytical stress solutions
were obtained from a coupled first-order system of difference equations using z-transform methods; key elements of this
approachwere that the determinant of the resulting globalmatrix |Am| in the z-spacewas palindromic polynomial with real

coefficients, and that its zeros were distinct and on the unit circle. We showed in (19) that the angles θ0 = π and {±θk}
⌊m

2 ⌋
k=1

corresponding to the zeros of |Am| on the unit circle generate the resonance frequency spectrum for the discrete model. The
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θ-angle formulas for selected designs can be recovered from (10) and (12)–(14), as well as [20]. In particular, form odd, the
positive angles coterminal with θ0 = π represent resonance frequencies which do not depend on the material properties.
In general, the θ-angles, hence the resonance frequencies for the discrete model, depend only on (certain combinations of)
the impedance ratios and not on any other parameters such as the length of the strip, et cetera. According to (19), as long as
m-layered designs with different impedance ratios have their θ-angles in common, they are guaranteed to have the same
resonance frequency spectrum for the discrete model.

The natural frequency spectrum of a free-fixed m-layered Goupillaud-type strip was derived from the resonance
frequency spectrumof the discretemodel (19) using the linear transformation for frequencies (27). An alternative derivation
was given in Section 3.1 by analytically solving the frequency equation with up to five layers. Based on (28), the natural
frequency spectrum of a free-fixedm-layered Goupillaud type strip depends on (combinations of) the impedance ratios and
it is inversely proportional to the equalwave travel time for each layer τm . Designswith these quantities in common share the
samenatural frequency spectrum for the free-fixed boundary conditions, see Section 4.1 for illustrations. The transformation
of variables (2) was successfully applied in Sections 2 and 3, to simplify the problem under consideration and the frequency
equation.

A possible design modification that provides a desired resonance frequency spectrum for the discrete model was
demonstrated in Section 4.2. When the resonance frequency results are combined with the stress optimization results
obtained in [20], we conclude that for a given optimal design of a Goupillaud-type layered strip with one fixed end,
depending on the type of loading at the other end, one can get either the best or the worst outcome when it comes to the
stress amplitude. Although thiswork focused on aGoupillaud-type layered elastic strip, the frequency resultswere shown to
extend to a non-Goupillaud-type layered strip with integer layer length ratios. The stress formulas involving trigonometric
sums can also be interpreted using the Chebyshev polynomials of the first and second kind.

So far we have shown that the palindromic polynomial with real coefficients |Am| has all its zeros on the unit circle for
1 ≤ m ≤ 5, see Section 2.2. Whether this is true for any m-layered Goupillaud-type strip or only for certain classes of
designs remains to be investigated. Preliminary work on this topic involving tridiagonal Toeplitz matrices was discussed in
Section 2.2. In addition, the experimental validation of the frequency results proposed here would be a natural and valuable
extension of this work.
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Appendix A. Solutions of the frequency equations for a free-fixedm-layered Goupillaud-type elastic strip (2 ≤ m ≤ 5)

A.1. Natural frequency spectrum for the free-fixed two-layer case

After a few mathematical manipulations involving trigonometric identities, the frequency equation (33) for m = 2
becomes

cos τω =
α1 − 1
α1 + 1

=
χ1 − 2
χ1

, where χ1 = (1 + α1) > 1 or α1 > 0. (A.1)

This suggests the following natural frequency spectrum

ωl1 =
1
τ

·


cos−1


χ1 − 2
χ1


+ 2l1π


, ωl2 =

1
τ

·


− cos−1


χ1 − 2
χ1


+ 2(l2 + 1)π


(A.2)

for l1, l2 = 0, 1, 2, . . .. Here α1 represents the impedance ratio between the first and the second layer, while χ1 = 1 + α1.
When both layers are occupied by the same material (α1 = 1), Eq. (A.1) recovers a known literature result for the natural
frequency spectrum of a homogeneous strip of length τ given in [10]. In this case, the frequency equation (A.1) becomes
cos τω = 0 which implies the natural frequency spectrum ωl =

(2l+1)
τ

·
π
2 , l = 0, 1, 2 . . .. Notice that (A.1) implies that

cos τω ≠ ±1.

A.2. Natural frequency spectrum for the free-fixed three-layer case

Using the fact that |∆m| = |∆̃m|, the frequency equation (33) for m = 3 becomes equivalent to solving the following
equations:

cos
2τ
3
ω = −1 or cos

2τ
3
ω =

χ2 − 2
χ2

, where χ2 = (1 + α1)(1 + α2) > 1. (A.3)
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Table B.1
Optimal base angle values for them-layer case.

m 2 3 4 5

Optimal base angles θ1,opt =
π
j θ1,opt =

π
2j−1 θ1,opt =

π
2j , θ1,opt =

π
2j+1 ,

θ2,opt = π −
π
2j θ2,opt =

(2j−1)π
2j+1

From (A.3) the frequency spectrum for the three-layer is
ωl0 = (2l0 + 1)

3π
2τ
,

ωl1 =
3
2τ

·


cos−1


χ2 − 2
χ2


+ 2l1π


, ωl2 =

3
2τ

·


− cos−1


χ2 − 2
χ2


+ 2(l2 + 1)π


,

(A.4)

where l0, l1, l2 = 0, 1, 2, . . ..

A.3. Natural frequency spectrum for the free-fixed four-layer case

Use of the double angle formula for the cosine for the four-layer case (m = 4), results in

cos2
τ

2
ω −

2Γ3

χ3
cos

τ

2
ω +

2Γ3 − χ3 + 4
χ3

= 0. (A.5)

For any given values of the design parameters χ3 and Γ3, the frequency spectrum is:
ωl1 =

2
τ

·


cos−1


Γ3 ±


(χ3 − Γ3)2 − 4χ3

χ3


+ 2l1π


,

l1, l2 = 0, 1, 2 . . . ,

ωl2 =
2
τ

·


− cos−1


Γ3 ±


(χ3 − Γ3)2 − 4χ3

χ3


+ 2(l2 + 1)π


.

(A.6)

When the first two layers are occupied by one material (α1 = 1) and the other two are occupied by another material
(α2 ≠ 1, α3 = 1), the four-layer case reduces to the two-layer case and (A.5) reduces to (A.1). From (A.5) if follows that

cos2
τ

2
ω =

α2

α2 + 1
,

which after applying the double angle formula for cosine becomes consistent with (A.1),

cos τω =
α2 − 1
α2 + 1

.

A.4. Natural frequency spectrum for the free-fixed five-layer case

Form = 5, |∆5| = cos τω5 ·

χ4 cos4 τ

5ω − (χ4 + Γ4) cos2 τ
5ω + (Γ4 + 1)


= 0, and we obtain

cos
2τ
5
ω = −1 or cos2

2τ
5
ω −

2Γ4

χ4
cos

2τ
5
ω +

2Γ4 − χ4 + 4
χ4

= 0. (A.7)

The frequency spectrum can then be obtained for any given values of χ4 and Γ4, similar to the four layer case.

Appendix B. Optimal base angles

For an m-layered Goupillaud-type elastic strip subjected to a Heaviside loading at one end and held fixed at the other
end, the optimal designs have the smallest stress amplitude of double the loading. These optimal designs are characterized
by the optimal values in Table B.1 of their base angles for j = 2, 3, 4, . . .:

Appendix C. Material properties

The elastic modulus E and density ρ of the materials used in Section 4.1 (see [29]) are as follows:
Aluminum alloy: E = 70 GPa and ρ = 2500 kg/m3; Brass: E = 20 GPa and ρ = 984.19 kg/m3; Copper alloy: E = 10 GPa
and ρ = 515.19 kg/m3; Lead: E = 14 GPa and ρ = 11, 340 kg/m3; Tungsten alloy: E = 275 GPa and ρ = 19, 610 kg/m3;
Steel: E = 200 GPa and ρ = 8000 kg/m3.



G.A. Gazonas, A.P. Velo / Wave Motion 49 (2012) 135–151 151

References

[1] W. Broer, B.J. Hoenders, Natural modes and resonances in a dispersive stratified N-layer medium, J. Phys. A-Math. Theor. 42 (24) (2009) 245207.
[2] A.I. Fedorchenko, I. Stachiv, A.-B. Wang,W.-H.Wang, Fundamental frequencies of mechanical systems with N-piecewise constant properties, J. Sound

Vibr. 317 (2008) 490–495.
[3] W. Hsueh, Analytical solution of harmonic travellingwaves inN-segment strings, Proc. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 456 (2000) 2115–2126.
[4] S. Gaudet, C. Gauthier, V.G. LeBlanc, On the vibrations of an N-string, J. Sound Vibr. 238 (1) (2000) 147–169.
[5] R.R. Churchill, Operational Mathematics, McGraw-Hill, New York, 1972.
[6] G. Caviglia, A. Morro, A closed-form solution for reflection and transmission of transient waves in multilayers, J. Acoust. Soc. Am. 116 (2) (2004)

643–654.
[7] J. Kaplunov, A. Krynkin, Resonance vibrations of an elastic interfacial layer, J. Sound Vibr. 294 (2006) 663–677.
[8] G. Qiang, Z. Wanxie, W.P. Howson, A precise method for solving wave propagation problems in layered anisotropic media, Wave Motion 40 (2004)

191–207.
[9] M.S. Fokina, V.N. Fokin, Resonances of acoustic waves interacting with an elastic seabed, J. Comput. Acoust. 9 (3) (2001) 1079–1093.

[10] K.F. Graff, Wave Motion in Elastic Solids, Dover Publications, New York, 1975.
[11] J.F. Claerbout, Fundamentals of Geophysical Data Processing: With Applications to Petroleum Processing, McGraw-Hill, New York, 1976.
[12] P. Goupillaud, An approach to inverse filtering of near-surface layer effects from seismic records, Geophysics 36 (1961) 754–760.
[13] M.A. Hooshyar, Goupillaud layers and construction of wave speed and density of a layered acoustic medium, J. Acoust. Soc. Am. 87 (6) (1990)

2310–2313.
[14] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol. 1, Interscience, New York, 1953.
[15] J.A. Ware, K. Aki, Continuous and discrete inverse-scattering problems in a stratified elastic medium I. Plane waves at normal incidence, J. Acoust. Soc.

Am. 45 (4) (1969) 911–921.
[16] L. Knopoff, A matrix method for elastic wave problems, Bull. Seismol. Soc. Am. 54 (1964) 431–438.
[17] N.A. Haskell, The dispersion of surface waves on multilayered media, Bull. Seismol. Soc. Amer. 43 (1953) 1734.
[18] W.T. Thomson, Transmission of elastic waves through a stratified solid medium, J. Appl. Phys. 21 (1950) 8993.
[19] K. Bube, R. Burridge, The one dimensional inverse problem of reflection seismology, SIAM Rev. 25 (4) (1983) 497–559.
[20] A.P. Velo, G.A. Gazonas, T. Ameya, z-transform methods for the optimal design of one-dimensional layered elastic media, SIAM J. Appl. Math. 70 (3)

(2009) 762–788.
[21] E.I. Jury, Theory and Application of the z-Transform Method, John Wiley & Sons, 1964.
[22] P.R. Parthasarathy, S. Dharmaraja, The transient solution of a local-jump heterogeneous chain in diatomic systems, J. Phys. A: Math. Gen. 31 (1998)

6579–6588.
[23] A. Bultheel, P. Gonzalez-Vera, E. Hendriksen, O. Njastad, Orthogonal rational functions and tridiagonal matrices, J. Comput. Appl Math. 153 (2003)

89–97.
[24] A.R. Willms, Analytical results for the eigenvalues of certain tridiagonal matrices, SIAM J. Matrix Anal. Appl. 30 (2) (2008) 639–656.
[25] C.M. da Fonseca, The characteristic polynomial of some perturbed tridiagonal k-Toeplitz matrices, Appl. Math. Sci. 1 (2) (2007) 59–67.
[26] R. Alvarez-Nodarse, J. Petronilho, N.R. Quintero, On some tridiagonal k-Toeplitz matrices: algebraic and analytical aspects. Applications, J. Comput.

Appl Math. 184 (2005) 518–537.
[27] W.L. Oberkampf, C.J. Roy, Verification and Validation in Scientific Computing, Cambridge University Press, 2010.
[28] J.G. Proakis, D.G. Manolakis, Introduction to Digital Signal Processing, Macmillan Publishing Company, 1988.
[29] M.F. Ashby, Materials Selection in Mechanical Design, second ed., Butterworth-Heinemann, Oxford, UK, 2000.



 
 
NO. OF  
COPIES ORGANIZATION  
 

 

 1 DEFENSE TECHNICAL 
 (PDF INFORMATION CTR 
 only) DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  IMNE ALC HRR 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  RDRL CIO LL 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
       
       1 DIRECTOR 
  US ARMY RESEARCH LAB 
  RDRL CIO LT 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
  US ARMY RESEARCH LAB 
  RDRL D 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 
 
 
 
 
 
 
 



 
 
NO. OF NO. OF 
COPIES ORGANIZATION COPIES ORGANIZATION 
 

 

 2 NSF 
  S MCKNIGHT 
  G PAULINO 
  4201 WILSON BLVD STE 545 
  ARLINGTON VA 22230-0002 
 
 2 DARPA 
  W COBLENZ 
  J GOLDWASSER 
  3701 N FAIRFAX DR 
  ARLINGTON VA 22203-1714 
  
 2 US ARMY TARDEC 
  AMSTRA TR R MS 263 
  K BISHNOI 
  D TEMPLETON MS 263 
  WARREN MI 48397-5000 
 
 1 DIRECTOR 
  US ARMY ARDEC 
  AMSRD AAR AEE W 
  E BAKER 
  BLDG 3022 
  PICATINNY ARSENAL NJ 
  07806-5000 
 
 1 COMMANDER 
  US ARMY RSRCH OFC 
  RDRL ROI M 
  J LAVERY 
  PO BOX 12211 
  RESEARCH TRIANGLE PARK NC 
  27709-2211 
 
 1 COMMANDER 
  US ARMY RSRCH OFC 
  RDRL ROE M 
  D STEPP 
  PO BOX 12211 
  RESEARCH TRIANGLE PARK NC 
  27709-221 
 
 5 SOUTHWEST RSRCH INST 
  C ANDERSON 
  K DANNEMANN 
  T HOLMQUIST 
  G JOHNSON 
  J WALKER 
  PO DRAWER 28510 
  SAN ANTONIO TX 78284 
 

 1 ERDC 
  US ARMY CORPS OF ENGINEERS 
  USACEGSL 
  P PAPADOS 
  7701 TELEGRAPH RD 
  ALEXANDRIA VA 22315 
 
 1 AFOSR/NL 
  875 NORTH RANDOLPH ST 
  SUITE 325 RM 3112 
  F FAHROO 
  ARLINGTON VA 22203 
 
 5 NAVAL RESEARCH LAB 
  E R FRANCHI CODE 7100 
  M H ORR CODE 7120 
  J A BUCARO CODE 7130 
  J S PERKINS CODE 7140 
  S A CHIN BING CODE 7180 
  4555 OVERLOOK AVE SW 
  WASHINGTON DC 20375 
 
 1 UNIV OF MISSISSIPPI 
  DEPT OF MECH ENGRG 
  A M RAJENDRAN 
  201-B CARRIER HALL 
  UNIVERSITY MS 38677 
 
 2 SRI INTERNATIONAL 
  D CURRAN 
  D SHOCKEY 
  333 RAVENSWOOD AVE 
  MENLO PARK CA 94025 
 
 1 VIRGINIA POLYTECHNIC INST 
  COLLEGE OF ENGRG 
  R BATRA 
  BLACKSBURG VA 24061-0219 
 
 1 JOHNS HOPKINS UNIV 
  DEPT OF MECH ENGRG 
  K T RAMESH 
  LATROBE 122 
  BALTIMORE MD 21218 
 
 1 INST OF ADVANCED TECH 
  UNIV OF TX AUSTIN 
  S BLESS 
  3925 W BRAKER LN STE 400 
  AUSTIN TX 78759-5316 
 



 
 
NO. OF NO. OF 
COPIES ORGANIZATION COPIES ORGANIZATION 
 

 

 1 APPLIED RSCH ASSOCIATES 
  D E GRADY 
  4300 SAN MATEO BLVD NE 
  STE A220 
  ALBUQUERQUE NM 87110 
 
 1 INTERNATIONAL RSRCH 
  ASSOC INC 
  D L ORPHAL CAGE 06EXO 
  4450 BLACK AVE 
  PLEASANTON CA 94566 
 
 2 WASHINGTON ST UNIV 
  INST OF SHOCK PHYSICS 
  Y M GUPTA 
  J ASAY 
  PULLMAN WA 99164-2814 
 
 1 UNIV OF DAYTON 
  RSRCH INST 
  N S BRAR 
  300 COLLEGE PARK 
  MS SPC 1911 
  DAYTON OH 45469 
 
 1 TEXAS A&M UNIV 
  DEPT OF GEOLOGY & 
  GEOPHYSICS MS 3115 
  F CHESTER 
  COLLEGE STATION TX 778431 
 
 1 UNIV OF SAN DIEGO 
  DEPT OF MATH & CMPTR SCI 
  A VELO 
  5998 ALCALA PARK 
  SAN DIEGO CA 92110 
 
 1 NATIONAL INST OF 
  STANDARDS & TECHLGY 
  BLDG & FIRE RSRCH LAB 
  J MAIN 
  100 BUREAU DR MS 8611 
  GAITHERSBURG MD 20899-8611 
 
 1 MIT 
  DEPT ARNTCS ASTRNTCS 
  R RADOVITZKY 
  77 MASSACHUSETTS AVE 
  CAMBRIDGE MA 02139 
 
 1 PENN STATE UNIV 
  DEPT OF ENGRG SCI & MECH 
  F COSTANZO 
  UNIVERSITY PARK PA 168023

 1 UNIV OF TEXAS-PAN AMERICAN 
  COLLEGE OF ENGRG 
  & COMPUTER SCI 
  D H ALLEN 
  1201 WEST UNIVERSITY DR 
  EDINBURG, TX 78539-2999 
 
 1 CLEMSON UNIV 
  DEPT OF MECH ENGRG 
  M GRUJICIC 
  241 ENGRG INNOVATION BLDG 
  CLEMSON SC 29634-0921 
 
 1 UNIV OF DELAWARE 
  DEPT ELECTRICAL & CMPTR 
  ENGRG 
  D WEILE 
  NEWARK DE 19716 
 
 7 UNIV OF NEBRASKA 
  DEPT OF ENGRG MECH 
  F BOBARU 
  Y DZENIS 
  G GOGOS 
  M NEGAHBAN 
  R FENG 
  J TURNER 
  Z ZHANG 
  LINCOLN NE 68588 
 
 1 WORCESTER POLYTECHNIC INST 
  MATHEMATICAL SCI 
  K LURIE 
  WORCESTER MA 01609 
 
 4 UNIV OF UTAH 
  DEPT OF MATH 
  A CHERKAEV 
  E CHERKAEV 
  E S FOLIAS 
  R BRANNON 
  SALT LAKE CITY UT 84112 
 
 4 UNIV OF DELAWARE  
  DEPT OF MECH ENGRG 
  T BUCHANAN 
  T W CHOU 
  A KARLSSON 
  M SANTARE 
  126 SPENCER LAB 
  NEWARK DE 19716 
 



 
 
NO. OF NO. OF 
COPIES ORGANIZATION COPIES ORGANIZATION 
 

 

 1 NORTHWESTERN UNIV 
  DEPT OF CIVIL & ENVIRON ENGRG 
  Z BAZANT 
  2145 SHERIDAN RD A135 
  EVANSTON IL 60208-3109 
 
 1 UNIV OF DELAWARE 
  CTR FOR COMPST MATRLS 
  J GILLESPIE 
  NEWARK DE 19716 
 
 1 LOUISIANA STATE UNIV 
  R LIPTON 
  304 LOCKETT HALL 
  BATON ROUGE LA 70803-4918 
 
 1 UNIV OF ILLINOIS 
  DEPT OF MECHL SCI & ENGRG 
  A F VAKAKIS 
  1206 W GREEN ST MC 244  
  URBANA CHAMPAIGN IL 61801 
 
 1 UNIV OF ILLINOIS 
  ARSPC ENGRG 
  J LAMBROS 
  104 S WRIGHT ST MC 236 
  URBANA CHAMPAIGN  IL 61801 
 
 1 T W WRIGHT 
  4906 WILMSLOW RD 
  BALTIMORE MD 21210 
 
 4 ADELPHI LABORATORY CTR 
  C CHABALOWSKI 
  J CHANG 
  O OCHOA 
  R SKAGGS 
  BLDG 205 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 

ABERDEEN PROVING GROUND 
 
 89 DIR USARL 
  RDRL CIH C 
   J CAZAMIAS 
   P CHUNG 
   D GROVE 
   J KNAP 
  RDRL WM 
   B FORCH 
   S KARNA 
   J MCCAULEY

   P PLOSTINS 
  RDRL WML 
   J NEWILL 
   M ZOLTOSKI 
  RDRL WML B 
   I BATYREV 
   S IZVYEKOV 
   B RICE 
   R PESCE RODRIGUEZ 
   D TAYLOR 
   N TRIVEDI 
   N WEINGARTEN 
  RDRL WML D 
   P CONROY 
   M NUSCA 
  RDRL WML E 
   P WEINACHT 
  RDRL WML F 
   D LYON 
  RDRL WML G 
   M BERMAN 
   W DRYSDALE 
  RDRL WML H 
   D SCHEFFLER 
   S SCHRAML 
   B SCHUSTER 
  RDRL WMM 
   J BEATTY 
   R DOWDING 
   J ZABINSKI 
  RDRL WMM A 
   J SANDS 
   J TZENG 
   E WETZEL 
  RDRL WMM B 
   T BOGETTI 
   B CHEESEMAN 
   C FOUNTZOULAS 
   G GAZONAS 
   D HOPKINS 
   R KARKKAINEN 
   P MOY 
   B POWERS 
   C RANDOW 
   T SANO 
   F TAVAZZA 
   M VANLANDINGHAM 
   R WILDMAN 
   C YEN 
  RDRL WMM C 
   J LA SCALA 
  RDRL WMM D 
   E CHIN 
   K CHO 



 
 
NO. OF  
COPIES ORGANIZATION  
 

 

  RDRL WMM E 
   J ADAMS 
   M COLE 
   T JESSEN 
   J LASALVIA 
   P PATEL 
   J SINGH 
  RDRL WMM F 
   L KECSKES 
   H MAUPIN 
  RDRL WML G 
   J ANDZELM 
   A RAWLETT 
  RDRL WMP 
   P BAKER 
   S SCHOENFELD 
  RDRL WMP A 
   B RINGERS 
  RDRL WMP B 
   C HOPPEL 
   R KRAFT 
   S SATAPATHY 
   M SCHEIDLER 
   T WEERASOORIYA 
  RDRL WMP C 
   R BECKER 
   S BILYK 
   T BJERKE 
   D CASEM 
   J CLAYTON 
   M GREENFIELD 
   B LEAVY 
   M RAFTENBERG 
   S SEGLETES 
  RDRL WMP D 
   R DONEY 
   D KLEPONIS 
   J RUNYEON 
   B SCOTT 
   H MEYER 
  RDRL WMP E 
   M BURKINS 
   B LOVE 
  RDRL WMP F 
   A FRYDMAN 
   N GNIAZDOWSKI 
   R GUPTA 
  RDRL WMP G 
   N ELDREDGE 
   D KOOKER 
   S KUKUCK 


	Gazonas_Velo_WaveMotion.pdf
	Analytical solutions for the resonance response of Goupillaud-type elastic media using  z -transform methods
	Introduction
	Discrete forcing function and resonance frequencies
	Description of the discrete model
	On the zeros of the determinant  |Am|
	General formulas for the stress and resonance frequencies
	Stress solutions at non-resonance frequencies
	Stress solutions at resonance frequencies
	Accuracy and precision of the recursive and explicit solutions

	Continuous forcing function and natural frequencies
	An alternative derivation of the natural frequency spectrum using the frequency equation

	Applications of the frequency results
	One dimensional layered media with a common frequency spectrum
	Design modification that gives a desired frequency spectrum within limitations
	Resonance frequencies and optimal designs
	Natural frequencies of a free-fixed non-Goupillaud-type layered strip with integer layer length ratios

	Conclusions
	Acknowledgments
	Solutions of the frequency equations for a free-fixed  m -layered Goupillaud-type elastic strip ( 2 leq m leq 5 )
	Natural frequency spectrum for the free-fixed two-layer case
	Natural frequency spectrum for the free-fixed three-layer case
	Natural frequency spectrum for the free-fixed four-layer case
	Natural frequency spectrum for the free-fixed five-layer case

	Optimal base angles
	Material properties
	References



